Equations for 3D Haralick Texture Feature
From FarsightWiki
Notation
--p(i,j): (i,j)th entry in a normalized gray-tone spatial dependence matrix, p(i,j) = P(i,j) / R * P(i,j) is the co-occurrence matrix and R is the sum of values in it, thus P(i,j) can be considered as the joint distribution of i and j, which are gray levels of the original image. The value of entry p(i,j) is supposed to be very small due to the large size of the co-occurrence matrix.
--px(i) / py(i): ith entry in the marginal-probability distribution matrix obtained by summing the rows/columns of p(i,j).
--Ng: Number of distinct gray levels in the image.
--px + y(k): px + y(i) is the probability of co-occurrence matrix coordinates summing to x+y
--px − y(k):
For more information about the Textural features, please refer to [1].
Reference
- [1] R. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for image classification," IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 610-621, 1973.
Textural Features
- 1) Angular Second Moment:
- 2) Contrast:
- 3) Correlation:, where ux,uy,σx,σy are the means and std.deviations of px and py, the partial probability density functions
- 4) Sum of the Squares of Variance:
- 5) Inverse Difference Moment:
- 6) Sum Average:
- 7) Sum Variance:
- 8) Sum Entropy:
- 9) Entropy:
- 10) Difference Variance:
- 11) Difference Entropy:
- 12) Information Measures of Correlation 1:
- 13) Information Measures of Correlation 2: f13 = (1 − exp( − 2.0 | HXY2 − HXY | ))1 / 2, with ,
,